Что такое пучинистые грунты

Обзорная статья о морозном пучении грунтов

Оглавление:

  1. Введение
  2. Классификация грунтов по степени пучинистости
  3. Определяем пучинистый грунт или нет
  4. Физика процесса
  5. Глубина и скорость промерзания грунта
  6. Чем опасно морозное пучение грунтов
  7. Основные меры в борьбе с пучением
  8. Заключение
  9. Связанные статьи

1. Введение

Пучинистый грунт: Дисперсный грунт (то есть состоящий из отдельных мелких частиц), который при переходе из талого состояния в мерзлое увеличивается в объеме вследствие образования льда (ГОСТ 25100-2011 Грунты. Классификация).

Температура начала замерзания для разных грунтов различна, и обычно находится в пределах от 0 до -1,5 °C, а у засоленных грунтов она значительно ниже – до минус 21 °C

Процесс промерзании зимой таких грунтов сопровождается вертикальным подъемом поверхности грунта относительно ее положения летом, причем поднятие поверхности часто происходит неравномерно. Это сопровождается развитием сил морозного пучения, действующих на фундаменты зданий и сооружений. После оттаивания весной такие грунты постепенно уменьшаются в объеме и поверхность грунта возвращается в прежнее положение (оседание).

Бывают и более серьезные явления, связанные с морозным пучением, такие как например бугры пучения, достигающие огромных размеров. Но они чаще всего характерны для районов распространения многолетней мерзлоты и для болот северных широт.

Бугры пучения

Для различных грунтов деформации пучения не одинаковы и зависят от степени его влажности перед замерзанием, уровня грунтовых вод, количества и размера пылеватых частиц в составе грунта, глубины промерзания. Максимальный общий подъем поверхности достигается к концу зимы (в этот период глубина промерзания максимальна) и может составлять до 40 см (!), а в некоторых случаях и более.

2. Классификация грунтов по степени пучинистости

Классификация грунтов по степени пучинистости встречается в нормативной литературе на проектирование фундаментов, в ГОСТ на грунты и в другой специальной литературе. В разных источниках классификация немного отличается, но суть везде одинакова. В таблице приведена классификация на основе объединения данных из ГОСТ 25100-2011, ГОСТ 25100-95, СП 22.13330.2016 и других источников:

Классификация грунтов по пучинистости согласно ГОСТ и СП
Разновидность грунта по степени пучинистостиСтепень пучинистости ɛfh , % (относительная деформация пучения)Характеристика и описание грунтов данной разновидности
Непучинистый<1,0· Глинистые при JL <0,
· Пески гравелистые, крупные и средней крупности независимо от Sr,
· Пески мелкие и пылеватые при Sr<0,6,
· Пески мелкие с содержанием менее 15% по массе частиц мельче 0,05 мм (независимо от значения Sr)*
· Крупнообломочные с заполнителем до 10 %
Слабопучинистый 1,0-3,5· Глинистые при 0< JL<0,25,
· Пески мелкие и пылеватые при 0,6 · Крупнообломочные с заполнителем (глинистым, мелкопесчаным и пылеватым) от 10 до 30%
Среднепучинистый 3,5-7,0· Глинистые при 0,25< JL<0,5,
· Пески мелкие и пылеватые при 0,8 · Крупнообломочные с заполнителем (глинистым, мелкопесчаным и пылеватым) свыше 30%
Сильнопучинистый 7,0-10· Глинистые при JL >0,5,
· Пески мелкие и пылеватые при Sr>0,95
Чрезмерно пучинистый >10

* — сведения из ГОСТ 25100-95 табл. Б.27, (в том же ГОСТ 25100, но обновленном в 2011 году этой информации уже нет.)

Здесь: Sr – степень влажности — отношение естественной (природной) влажности грунта W к влажности, соответствующей полному заполнению пор водой (без пузырьков воздуха); JL —  показатель текучести грунта (определяется только для глинистых грунтов и показывает насколько грунт «разжижен» от проникшей в него влаги)

Степень морозной пучинистости ɛfh определяет на сколько при замерзании образец грунта увеличивается по высоте. Например, при промерзании слоя грунта толщиной 1,0 м с показателем ɛfh равным 7% грунт увеличится по высоте на 7 см.

При этом «непучинистый» грунт все равно, как правило, будет увеличиваться в объеме, но на незначительную величину – менее 1%.

Так же существует таблица которая определяет степень пучинистости грунта в зависимости от положение уровня грунтовых вод относительно расчетной глубины промерзания грунта z (из «Руководства по проектированию оснований и фундаментов на пучинистых грунтах» НИИОСП им. Н.М. Герсеванова):

Уровень грунтовых вод должен приниматься с учетом прогноза его изменения согласно требованиям норм проектирования.

3. Определяем пучинистый грунт или нет

К пучинистым грунтам относятся глинистые грунты, пески пылеватые и мелкие, а также крупнообломочные грунты с глинистым и мелкопесчаным заполнителем более 10%, имеющие к началу промерзания влажность выше определенного уровня (см. таблицу выше).

Для восприятия такая проще формулировка:

К гарантировано НЕпучинистым относятся только:

  • пески средней крупности, крупные и гравелистые;
  • щебенистые и крупнообломочные грунты с глинистым или мелкопесчаным заполнителем менее 10% (заполняет пустоты между камнями);
  • скальные грунты (вода не проникает в них в достаточном количестве из-за отсутствия сообщающихся пор, и они имеют высокую плотность и прочность)
Если у Вас такие грунты основания, то можно смело забыть о морозном пучении

Для всех остальных грунтов (супеси, суглинки, глины, мелкие и пылеватые пески, а также щебенистые и крупнообломочные грунты с заполнителем более 10%) справедливо утверждение – они могут быть как пучинистыми, так и непучинистыми и зависит это от:

  1. количества воды в грунте (влажности) – любой грунт в абсолютно сухом состоянии не проявит вообще никаких пучинистых свойств при промерзании (правда в природе бывают исключения), а вот при увлажнении глинистые грунты будут обладать неприятным свойством, о котором мы говорим. То есть один и тот же грунт может превратиться из непучинистого в средне-, сильно- и даже чрезмерно пучинистый если его как следует увлажнить (подъем грунтовых вод, протечка водопроводной сети и др. причины). Чем выше влажность, тем сильнее проявится пучение.

При проектировании фундаментов на основаниях, сложенных пучинистыми грунтами, следует учитывать возможность повышения влажности грунта за счет подъема уровня подземных вод, инфильтрации поверхностных вод и экранирования поверхности. (СП 22.13330.2016 п. 6.8.2).

  1. гранулометрического состава грунта – степень пучинистости увеличивается в основном с ростом количества (% по массе) частиц размером от 0,05 до 0,005 мм. Более крупные и, что интересно, более мелкие частицы оказывают на показатель пучинистости влияние в меньшей степени.
  2. Наличия и близости уровня грунтовых вод и соответственно возможности поступления в промерзающий грунт влаги по капиллярам.

Как отличить по визуальным и косвенным признакам супесь от песка и глины и вообще определить тип грунта см. в отдельной статье.

4. Физика процесса

Почему песок не увеличивается в объеме даже в водонасыщенном состоянии? Почему разные грунты имеют разный показатель пучинистости?

Суть процесса морозного пучения достаточно сложна и многообразна. Многим известно, что при замерзании определенного объема воды получается лед, занимающий больший объем и имеющий меньшую плотность (917 кг/м3). Увеличение объема при этом составляет примерно 9 %. Но морозное пучение грунтов связано не только с этим свойством воды.

При замерзании даже всей поровой воды в грунте увеличение его объема не превышает 3…4% (в закрытой система). В то же время в природном залегании объем грунта при его промерзании увеличивается на 10—50 и даже 100%. Пучение грунта достигает таких показателей вследствие кристаллизации в порах грунта воды и поступления дополнительной влаги по капиллярам (миграции) к фронту промерзания из еще не промерзших нижележащих слоев (открытая система). Это сопровождается резким увеличением влажности грунта с образованием в нем льда в виде линз, прослоек, кристаллов и др. структур.

Песчаные грунты с достаточно крупными частицами не позволяют влаге мигрировать при промерзании из-за отсутствия узких капилляров и малой поверхности смачивания, а наоборот создают условия для «отжатия» влаги в сторону еще не промерзших слоев, поэтому увеличение объема при промерзании в них практически отсутствует даже при полном водонасыщении. Очень мелкие частицы размером менее 0,005 мм так же затрудняют процесс миграции влаги и снижают пучинистость

Таким образом влияние оказывает не только первоначальная влажность и гранулометрический состав грунта, но и его пористость, способность пропускать капиллярную воду, количество связанной воды, химический состав и ряд других факторов.

Детально физика процесса рассмотрена в отдельной статье.

5. Глубина и скорость промерзания грунта

Одними из наиболее значимых факторов, определяющих величину поднятия поверхности (степень пучинистости) при промерзании грунтов являются глубина и скорость промерзания.

Глубина и скорость промерзания грунтов зависит от значений отрицательной температуры наружного воздуха в зимний период, от продолжительности зимнего периода, от толщины и плотности снегового покрова, теплопроводности грунта, наличия теплоизолирующих покрытий (бывают как естественные, например, моховый или торфовый слой, так и искусственные), интенсивности воздействия солнечной радиации, от смен холодной погоды на оттепели.

В нормативной документации на проектирование фундаментов рассматривается только глубина промерзания грунта. Эта величина рассчитывается по формулам в зависимости от среднемесячных температур в холодный период года и может в зависимости от региона и условий меняться в широких пределах: от 0 до 6 м.

Подробно вопросы влияния глубины и скорости промерзания на основания и фундаменты и методы расчета этих параметров приведены в отдельной статье.

6. Чем опасно морозное пучение грунтов

К сожалению многие, даже опытные строители, недооценивают опасность морозного пучения из-за того что его влияние проявляется не сразу, растянуто во времени и слишком сложно предсказуемо. А зря… Ведь именно непредсказуемость морозного пучения делает его учет при проектировании и строительстве обязательным.

Сложность процесса пучения и неоднородность грунтов основания вызывают неравномерный подъем поверхности при промерзании. Воздействие морозного пучения на фундаменты как правило вызывает очень серьезные негативные последствия:

Трещина в фундаменте под воздействием морозного пучения (весна). Выпучило трубу ограды, фундамент поднят на 7-9 см над землей, после оттаивания летом — не опускается

В малозаглубленных и поверхностных фундаментах, подверженных лобовым силам морозного пучения возникают:

— недопустимые крены и изгибающие усилия в ленточных и плитных фундаментах, вызывающие их повреждение, крены элементов надземной части здания, растрескивание стен (для стен из жестких каменных материалов) и др.;

— разность вертикальных деформаций и недопустимые крены для отдельных столбчатых фундаментов, вызывающие повреждение надземной части здания, изменение геометрии дверных и оконных проемов и др.;

Трещина в ленточном фундаменте от воздействий морозного пучения

В свайных и ленточных/столбчатых фундаментах с глубиной заложения больше глубины промерзания возникают:

— подъем свайных фундаментов вместе с поверхностью грунта под воздействием касательных сил морозного пучения. Это явление имеет склонность накапливаться, т.к. фундаменты после оттаивания грунта опускаются в исходное положение не полностью, или вообще не опускаются, а в следующий зимний сезон все снова повторяется.

— возникают очень большие растягивающие усилия между выпучиваемой частью фундамента и нижней частью, находящейся в непромерзающих слоях и удерживающей конструкцию от выпучивания (может привести к разрыву конструкции).

Опасность морозного пучения заключена в неравномерности поднятия поверхности грунта и в накоплении эффекта выпучивания (для заглубленных фундаментов) с каждым годом. При морозном пучении возникают огромные усилия, сдержать которые или очень сложно, или невозможно

Рис. Накопительный эффект от выпучивания стойки

В этом видеоролике интересный пример воздействия морозного пучения на деревянный дом:

7. Основные меры в борьбе с пучением

Первое что требуется в деле борьбы с морозным пучением — правильный выбор глубины заложения фундаментов для исключения воздействия лобовых сил морозного пучения, т.к. эти силы имеют огромные значения и бороться с ними очень тяжело. Для этого необходимо чтобы подошва фундамента находилась ниже глубины промерзания.

Иногда в малоэтажном строительстве имеет смысл делать незаглубленные или малозаглубленные фундаменты, заранее полагая что они будут подвержены пучению, и рассчитывать их на восприятие соответствующих усилий. Этот подход неоднозначный и применим далеко не всегда. Отдельно читайте о малозаглубленных фундаментах в статье.

После исключения лобовых сил, необходимо справиться с оставшимися касательными силами пучения. Мероприятия по борьбе с касательными силами пучения в основном сводятся к следующему списку:

  1. Применение покрытий боковой поверхности свай и столбчатых фундаментов (окраска, обмазка, оболочки), снижающих силы смерзания с грунтом в пределах промерзающего слоя;
  2. Применение винтовых свай и свай с уширением в нижней части (сваи РИТ, буронабивные сваи с камуфлетной пятой и др.), грибовидных фундаментов и фундаментов с развитой подошвой для создания большого сопротивления выдергиванию;
  3. Увеличение длины сваи из расчета на морозное пучение (так чтобы сила, удерживающая сваю от выпучивания, была больше силы морозного пучения);
  4. Засыпка пазух котлованов непучинистым грунтом (песком, ПГС).
  5. Создание обратного уклона граней фундамента  в пределах промерзающей толщи.

Вспомогательные меры для увеличения эффективности решений:

— Исключение переувлажнения грунтов за счет применения поверхностного стока и дренажных систем;

— Исключение или уменьшение глубины промерзания грунтов за счет утепления поверхности;

— Введение в грунт веществ, снижающих температуру замерзания грунта (засаливание, пропитка нефтепродуктами) – наносит урон экологии поэтому редко применяется.

Конкретные меры по борьбе с морозным пучением для разных типов фундаментов детально рассматриваются в отдельной статье.

8. Заключение

В заключение отметим что:

  • достоверно определить степень пучинистости можно только при испытаниях в лаборатории, и такие испытания проводят очень редко даже при инженерно-геологических изысканиях для крупных объектов – чаще принимают по табличным данным на основании косвенных признаков: консистенции, влажности и др., и вот почему:
  • если образец грунта, отобранный на площадке строительства, оказался слабо- или непучинистым то это не гарантирует что он таким и останется на протяжении всего срока службы сооружения. Как уже говорилось выше возможно увлажнение грунта по разным причинам (в том числе и обильные осенние дожди) и, соответственно, переход его в разряд пучинистых.

Подводя итоги можно утверждать, что все грунты следует потенциально считать пучинистыми за исключением нескольких случаев:

1) в основании сооружения залегают пески крупные или средней крупности, щебенистые или крупнообломочные грунты с заполнителем до 10% по массе.

2) в основании сооружения залегают скальные грунты.

3) Грунты находятся в сухом состоянии и нет опасности их замачивания (грунтовые воды отсутствуют или находятся на большой глубине (на 3,5 м и более ниже глубины промерзания при максимально высоком уровне грунтовой воды), есть все условия для стока поверхностных вод и эти условия не изменятся в будущем, поблизости нет водонесущих коммуникаций и они никогда не появятся.

Пункт 3 в большинстве случав следует подвергать сомнению в долгосрочной перспективе, т.к. нельзя сказать наверняка что будет через 5, 10 или 20 лет.

Таким образом если грунт не является гарантированно непучинистым, то следует всегда предусматривать мероприятия по предотвращению воздействия на фундамент морозного пучения

И помните — если фундамент не выдерживает все нагрузки и воздействия на него, то после завершения строительства, как правило, уже ничего не исправить. И сэкономленные на фундаменте деньги обернутся грандиозными затратами…

9. Связанные статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *